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A brief overview

about BNS mergers
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BNS merger in a nutshell: dynamics

Credit: D. Radice; Radice, Bernuzzi, Perego 2020 ARNPS, Bernuzzi 2020 for recent reviews

▶ inspiral: driven by GW emission
▶ GW-dominated phase:

▶ LGW ∼ 1055erg/s e.g. Zappa et al 2018 PRL

▶ at merger
▶ for q ∼ 1, vorb/c ≈

√
C ∼ 0.39 (C/0.15)1/2 (C ≡ M/R) and q = M1/M2

▶ NS collision Ekin → Eint
▶ copious ν production: Lν ∼ 1053erg/s Eichler+ 89, Ruffert+ 97, Rosswog & Liebendoerfer 03

▶ viscous phase: MHD viscosity + ν emission
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BNS merger in a nutshell: ejecta
▶ a few percent of M = MA + MB

▶ neutron rich, i.e. Ye < 0.5 and typically Ye ≪ 0.5
▶ expelled by different mechanisms, acting on different timescales

Ye = ne/nB ≈ np/ (np + nn): electron fraction
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BNS merger in a nutshell: ejecta
▶ a few percent of M = MA + MB

▶ neutron rich, i.e. Ye < 0.5 and typically Ye ≪ 0.5
▶ expelled by different mechanisms, acting on different timescales

▶ dynamical ejecta (t ∼ 1 − 5ms)
▶ tidal & shock heated ejecta
▶ ⟨v⟩ ∼ 0.2 − 0.3c
▶ Mej ∼ 10−4 − 10−2M⊙

Radice, Perego, Hotokezafa, Fromm, Bernuzzi, Roberts ApJ

2018
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▶ dynamical ejecta (t ∼ 1 − 5ms)
▶ tidal & shock heated ejecta
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BNS merger in a nutshell: ejecta
▶ a few percent of M = MA + MB

▶ neutron rich, i.e. Ye < 0.5 and typically Ye ≪ 0.5
▶ expelled by different mechanisms, acting on different timescales

▶ dynamical ejecta (t ∼ 1 − 5ms)
▶ tidal & shock heated ejecta
▶ ⟨v⟩ ∼ 0.2 − 0.3c
▶ Mej ∼ 10−4 − 10−2M⊙

▶ disk winds (t ∼ 0.05 − 10s)
▶ neutrinos, MHD
▶ ⟨v⟩ ∼ 0.1c
▶ up to Mej ∼ 0.1 − 0.4Mdisk

▶ spiral wave winds (t ∼ 0.01 − 1s)
▶ m = 1, 2 spiral mode in the remnant
▶ ⟨v⟩ ∼ 0.2c
▶ Ṁ ∼ 0.1M⊙/s
▶ acting until BH formation

top: ϕ-angular momentum radial flux

bottom: spiral wind ejecta mass

Nedora et al ApjL 2019
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r-process nucleosynthesis: basic ideas

▶ how do heavy elements (> Fe group) form? n-capture e.g. B2FH RvMP 57

(A,Z) + n ↔ (A + 1,Z) + γ

▶ if n density high enough, tn−capt ≪ tβ−decay

▶ ejecta properties, i.e. (s,Ye, τexp) at NSE freeze-out (T ≲ 6GK)
determine final nucleosynthesis yields

Hoffman+ ApJ 98,Lippuner & Roberts ApJ 17
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r-process nucleosynthesis in BNS ejecta
▶ at low entropy (s ≲ 40kb/baryon), Ye dominant parameter
▶ lanthanides (and actanides) production dramatically changes photon

opacity (atomic f -shell opening)
▶ Ye influenced by weak interactions involving neutrinos, e.g.

p + e− ↔ n + νe n + e+ ↔ p + ν̄e
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Ye = ne/nB ≈ np/ (np + nn): electron fraction
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Impact of ν processes on BNS merger ejecta

▶ if ν absorption is neglected (e.g., for BH-NS mergers)
▶ Ye ≲ 0.1 ⇒ robust r-process (Ye = ne/nB = np/(nn + np))

▶ however, ν-matter interactions increase Ye, e.g. at polar latitudes
▶ most relevant reaction: n + νe → p + e−
▶ possible angular dependence in r-process nucleosynthesis
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see also e.g. Wanajo+ ApJL 2014’ Sekiguchi+ PRD 2015; Martin, Perego, Kastaun & Arcones CQG 2018

Albino Perego OA d’Abruzzo Seminar, Teramo, 01/02/2024 12 / 75



Impact of ν processes on BNS merger ejecta

▶ if ν absorption is neglected (e.g., for BH-NS mergers)
▶ Ye ≲ 0.1 ⇒ robust r-process (Ye = ne/nB = np/(nn + np))
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Electromagnetic counterparts
BNS mergers (possibly) produce several transient EM emissions: e.g.,

▶ (short/hard) gamma-ray burst
▶ accretion of magnetized matter on

compact object producing a
relativistic jet

▶ prompt emission:
▶ γ-rays
▶ T90 ≲ 2 sec

▶ afterglow emission
▶ from X-rays to radio
▶ t ∼ days

▶ kilonova
▶ r-process nucleosynthesis

produces unstable nuclei
▶ quasi-thermal, nuclear powered

▶ from UV to NIR
▶ t ≲ 0.1 − 10 days

▶ afterglow emission
▶ from X-rays to radio
▶ t ∼ months − years

Berger+ 2015
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Electromagnetic counterparts
BNS mergers (possibly) produce several transient EM emissions: e.g.,

▶ (short/hard) gamma-ray burst
▶ accretion of magnetized matter on

compact object producing a
relativistic jet

▶ prompt emission:
▶ γ-rays
▶ T90 ≲ 2 sec

▶ afterglow emission
▶ from X-rays to radio
▶ t ∼ days

▶ kilonova
▶ r-process nucleosynthesis

produces unstable nuclei
▶ quasi-thermal, nuclear powered

▶ from UV to NIR
▶ t ≲ 0.1 − 10 days

▶ afterglow emission
▶ from X-rays to radio
▶ t ∼ months − years

LVC PRL 2017
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Relevance & Challenges in NS merger modelling
▶ relevance:

▶ astrophysical key players
▶ primary GW sources
▶ major source of r-process elements → kilonova emission
▶ central engine of short/hard GRBs

▶ BNS mergers as cosmic laboratory for fundamental physics
▶ prototype of MM astrophysics sources

▶ challenge:
quantitative statements require sophisticated numerical models
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Relevance & Challenges in NS merger modelling
▶ relevance:

▶ astrophysical key players
▶ primary GW sources
▶ major source of r-process elements → kilonova emission
▶ central engine of short/hard GRBs

▶ BNS mergers as cosmic laboratory for fundamental physics
▶ prototype of MM astrophysics sources

▶ challenge:
quantitative statements require sophisticated numerical models

multi-physics
▶ General Relativity
▶ strong nuclear interaction
▶ weak nuclear interactions
▶ magnetic fields (MHD) & EM

interactions

multi-scale
▶ strong field dynamics

▶ small-size (100 km)
▶ short timescale (1 ms − 1 s)

▶ EM counterpart emission
▶ large-scale (106 km − 1012 km)
▶ long timescale (1 s − 10 days)

different scales & different interactions ⇒ intimately related

Albino Perego OA d’Abruzzo Seminar, Teramo, 01/02/2024 17 / 75



State-of-the-art of BNS merger modeling

BNS merger: computer simulations in Numerical Relativity
▶ solution of Einstein’s equations coupled with relativistic

(magneto)hydrodynamics
▶ relevant input physics:

▶ finite-T, composition dependent NS EOS
▶ source terms: ν radiation

▶ simulations often containing subset of necessary physics
Shibata & Hotokezaka 2019, Radice,Bernuzzi & Perego ARNPS 2020 for recent reviews
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State-of-the-art of BNS merger modeling

BNS merger: computer simulations in Numerical Relativity
▶ solution of Einstein’s equations coupled with relativistic

(magneto)hydrodynamics
▶ relevant input physics:

▶ finite-T, composition dependent NS EOS
▶ source terms: ν radiation

▶ simulations often containing subset of necessary physics
Shibata & Hotokezaka 2019, Radice,Bernuzzi & Perego ARNPS 2020 for recent reviews

BNS counterparts: Radiative transfer simulations
▶ photon diffusion in radioactive material
▶ relevant input physics:

▶ r-process element opacity, heating rate, thermalization efficiency
▶ non-trivial, asymmetric geometry

▶ simulations often containing simplifications
e.g. Kawaguchi et al 2020 ApJ, Kasen et al Nature 2017, Tanaka et al 2018 PASJ, Wollaeger et al 2018 MNRAS, Miller et al PRD 2019, . . .
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Toward end-to-end modeling of
observed events:

GW170817
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Properties of AT2017gfo

AT2017gfo: kilonova associated to GW170817
▶ bright, UV/O component, with a peak @ ∼ 1day (blue component)
▶ rather bright, nIR component, with a peak @ ∼ 5day (red component)

Light curves; Pian, D’Avanzo+2017 (left); Tanvir+2017 (right)
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Strontium (or Helium) in AT2017gfo early spectra?

▶ observed spectra from AT2017gfo
▶ 1.5-4.5 day: identification of Strontium (Sr)

P-Cygni lines in spectrum
▶ spectra modeling to estimate Sr mass in

GW170817 ejecta
▶ Watson et al, Nature, 2018:

1 − 5 × 10−5M⊙

▶ Gillanders et al MNRAS 2022:

≳ 1.2 × 10−5M⊙

▶ SrII line in overlap with HeII line Sr in AT2017gfo spectra: Watson et al Nature 2018

▶ do we expect Sr in GW170817 ejecta? If yes, how much? Does this say
something about this event?

▶ Is it possible that we are observing He in the ejecta?
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Modeling GW170817 through simulations

Simulations targeted to GW170817 (Mchirp = 1.188M⊙):
Nedora+ 2021 ApJ, Bernuzzi+2020 MNRAS

▶ 2 distinct binaries,
q = MB/MA = [1, 0.56]

▶ GRHD (WhiskyTHC code) Radice+ 2011,13,14

▶ finite-T, composition dependent
nuclear EOSs: HS(DD2) & BLh

CompOse & stellarcollapse websites, Logoteta et al 2021

▶ neutrino treatment Radice 2016 MNRAS

▶ leakage in opt. thick conditions
▶ M0 in opt. thin conditions

▶ w and w/o effective treatment for
turbulent viscosity (GRLES) Radice 2018 ApJL

▶ multiple resolutions

Bernuzzi et al. MNRAS 2020
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Nucleosynthesis in the ejecta
▶ all models produce dynamical ejecta
▶ q = 1 models produce long-lived remnant & spiral wave wind ejecta
▶ extraction of dynamical and spiral wave wind ejecta properties
▶ calculation of expected nucleosynthesis yields using Skynet

Lippuner & Roberts ApJSS 2017
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A constraint on GW170817 remnant survival time?
How much Sr is produced in targeted simulations?

▶ dynamical ejecta
▶ for symmetric BNS, mSr,dyn ≈ 3 × 10−5M⊙
▶ for very asymmetric BNS, mSr,dyn ≈ 3 × 10−6M⊙

▶ spiral-wave wind ejecta
▶ only in symmetric BNS,

XSr,dyn ∼ 3.4 × 10−2 & Ṁspiral−wave ≈ 1.6 × 10−1M⊙/s

Where does it come from and what could we infer from it?
▶ Sr robustly produced for 0.2 ≲ Ye ≲ 0.4
▶ unequal mass BNS model seems to be disfavored
▶ q = 1 dynamical ejecta seems to account for a large fraction of Sr
▶ assuming mSr ∼ 5 × 10−5M⊙, ∆twind ≲ 4 ms
▶ our results suggest GW170817 remnant survived only a few tens of ms
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H and He in kilonova spectra?

H:
▶ β-decay of unburned free n
▶ mH,dyn ≈ 0.5-1.4 × 10−6M⊙

▶ interesting for UV KN precurson, but lower than initially expected
Metzger et al 2015 MNRAS

▶ no visible spectral features using TARDIS Kerzendorf & Sim MNRAS 2014

He:
▶ β-decay of n, producing d → t → 4He + α-decay of very heavy

elements
▶ or α-rich freeze-out
▶ mHe,dyn ≈ 3-8 × 10−6M⊙

▶ no visible signature using TARDIS in LTE or NLTE tuned to SNIa
Vogl et al 2020 A&A

▶ He spectral features require strong NLTE effects see Tarumi et al 2023
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Did a kilonova set off

in our neighborhood, ∼ 3Myrs ago?
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60Fe and 244Pu detection in crust sediments
▶ observation of r-process abundance patterns traceable to single events

has the potential to shed light on their production site
▶ detection of live radioactive isotopes in sediments features a

non-trivial temporal dependence from their decay profile

analysis of deep-sea crust sample de-
livered to Earth within the past few
million years
▶ identification of (175 ± 15) 244Pu

(τ = 116.3Myr) atoms
▶ simultaneous signal of 60Fe

(τ = 3.8Myr)
▶ 244Pu/60Fe = (53 ± 6)× 10−6

How can we interpret the more re-
cent peaks?

Wallnet+21 Science
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Supernova VS kilonova origin?
▶ 60Fe usually synthesized in (standard) CCSNe
▶ 244Pu synthesized in rare events

▶ kilonovae from compact binary mergers
▶ special CCSN?

▶ single source or multiple sources?

Wang+21 ApJ

▶ explosive event(s) in Local
Bubble

▶ previous analysis seem to
exclude a nearby KN as possible
single source

Wang+21 used i) BNS modelels forming a BH & ii) isotropized ejecta
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Modeling of long lived BNS mergers
Selection of simulations targeted to GW170817 (Mchirp = 1.188M⊙),
producing a long lived remnant:

▶ 6 distinct binaries
▶ q = MA/MB ∈ [0.7, 1.]

▶ GRHD (WhiskyTHC code) Radice+ 2011,13,14

▶ finite-T, composition dependent
nuclear EOSs:
HS(DD2), SFHo, BLh, SRO(Sly4)

CompOse & stellarcollapse websites, Logoteta et al 2021

▶ neutrino treatment Radice 2016 MNRAS

▶ leakage in opt. thick conditions
▶ M0 in opt. thin conditions

▶ effective treatment for turbulent
magnetic viscosity (GRLES) Radice 2018 ApJL

▶ single maximum resolution: dx = 185m

Bernuzzi et al. MNRAS 2020
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Iron to plutonium ratio from simulations

Yi

Yj
(θ̃, twind) =

Aj

Ai

mej,i(θ̃, twind)

mej,j(θ̃, twind)
et(1/τj−1/τi)

Chiesta et al. ApJL 2024 accepted

▶ 60Fe and 244Pu from dynamical
ejecta & spiral-wave wind

▶ polar angle dependence:
inefficient mixing assumption

▶ color band: spiral wave wind
duration twind ∈ [50, 200]ms

▶ BNS merger occurring 3.5 Myr
ago

▶ similar trend for all simulations
▶ 2 models match observed ratio
▶ crucial presence of spiral wave wind and neutrino effects to produce

also iron group nuclei
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Do distance and time matters?

Fi = fdust,i
miso

ej,i(θ̃, twind)/ (Aimu)

4πD2
rad,i

e−t/τi

▶ F : measured fluence on Earth
▶ fdust,i ≈ 0.5: fraction of atoms forming dust

Chiesta et al. ApJL 2024 accepted

▶ radioactivity distance compatible with local bubble and fading radius
▶ no fine tuning wrt time within ± 1 Myr
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How to solve the puzzle?
Detection of other live isotopes can break scenario degeneracy

▶ recent detection of 53Mg in sediments
▶ but negligible 53Mg in our simulation
▶ a killer or a new challenge for a nearby

BNS merger?
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toward end-to-end modeling of
observed events:

GW190425
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GW190425 GW detection

▶ GW190425
▶ second BNS merger detected

by LVC, M = (1.44 ± 0.02)M⊙
▶ heaviset BNS ever observed:

Mtot = (3.3 ± 0.1)M⊙

▶ poor sky localization
▶ large field of view searches

(∼ 1/3 coverage), but no
detected EM counterparts

Skymap from GW190425: Abbott et al ApJL, 892(1) 2018

assuming a good enough sky coverage, does the lack of EM counterpart
say something?
▶ based on NR simulations (polytropic EOS, no ν’s) and rad transfer KN

code, Duti et al PRD ()2022 excluded face-on BNS with q ≳ 1.2
▶ Raaijmaker et al ApJ (2021) computed GW190425-like KN light curves

using GW posteriors + GW170817-inferred EOS + NR fitting formulae
and found that ZTF could have detected GW190425 KN at peak
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Modeling of GW190425

How does KN light curves depend on microphysics in modeling of
GW190425-like BNS events?

Simulations targeted to GW190425 (Mchirp = 1.44M⊙):
▶ 3-4 distinct binaries,

q = MB/MA ∈ [1, 1.67]
▶ GRHD (WhiskyTHC code) Radice+ 2011,13,14

▶ 2 resolutions: ∆x = [180, 246]m

What’s new?
▶ 4 finite-T, composition dependent

nuclear EOSs: HS(DD2), BLh, SFHo &
SLy4

CompOse & stellarcollapse websites, Logoteta et al 2021

▶ neutrino treatment Radice 2016 MNRAS

▶ leakage in opt. thick conditions
▶ M0 in opt. thin conditions

Radice 2018 ApJL

Courtesy of D. Radice
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Dynamical ejecta and disk masses
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Camilletti et al 2022 MNRAS

▶ all simulations resulted in prompt BH formation
▶ overall, small Mej and Mdisk, unless very asymmetric BNS
▶ dependence on q and on (EOS-dependent) compactness
▶ Jdisk/Mdisk ∼ (8 − 10)GM⊙/c, over several orders of magnitude
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Expected kilonova signal
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▶ KN signal computed with
improved version of
multicomponent, anisotropic
KN light curve model

Wu et al MNRAS 2022

▶ small Mej & Mdisk: faint KNe

▶ r-band AB mag at peak below
ZTF sensitivity threshold

▶ possible exception: very stiff
EOS & high asymmetry

▶ no robust constraints on EOS
& q, once microphysics is
taken into account
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A FRB associated to GW190425?
It is commonly believed that GW190425 promptly collapsed to BH.

Abbott et al 2020 ApJL, Agathos et al 2020

However . . .

FRB 20190425A was a fast radio burst happening
▶ 2.5 hours after GW190425 merger
▶ in the GW sky localization area

⇒ a possible association between GW190425 and FRB 20190425A?
Moroianu et al 2023, Nat Astr.

Interesting consequences:
▶ confirmation of “blitzar”

mechanism
▶ need of long lived remnant →

very stiff nuclear EOS
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Simulating non-collapsing GW190425 mergers

▶ simulations using Big Apple (BA) EOS do not produce BH, unless the
2 NSs have very different masses

▶ MNS,max = 2.6M⊙ for BA EOS Fattoyev et al 2020

▶ caveat: no neutrinos and approximated finite temperature effects
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Ejecta and kilonova light curves

Radice et al arxiv 2309.15195
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Constraints on dispersion measure

Radice et al arxiv 2309.15195

▶ ejected mass should have
provided a bright kilonova

▶ ejected mass should have
prevented radio emission
during the first hours

⇒ association with FRB seems ruled out
⇒ assuming good sky coverage, long lived remnant is unlikely if BNS
merger happened dL ≲ 150 pc
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Summary & Conclusions I
▶ BNS merger as sites where matter reaches most extreme gravity,

density and temperature conditions
▶ BNS modeling: fundamental to make the most of MM astrophysics
▶ numerical simulations have dramatically improved over the last few

years, but much work still needed
▶ large number of extractable information
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Summary & Conclusions II
▶ EM counterparts provide unique and complementary inforation to

GW signals
▶ combination of detailed merger & counterpart models necessary to

produce faithful predictions and analysis
▶ sophisticated models can highlight BNS merger potential as unique

laboratories in the sky
▶ however, several uncertainties still remain, both on the physics and on

the modelling side

Chiesa et al ApJL accepted
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