What is dust and why we study it?

Silicates (Mg₂SiO₄,MgSiO₃)

Carbon

few hundredths of a μm up to few μm

Dust is formed from metals, it is ~1% of the total mass of the baryons! ...but it is important in several astrophysical contexts:

- ➤star formation (gas cooling)
- ➤molecule formation ("mechanical" catalyst)
- ➢planets formation
- ➢ for studying the Solar System (pre-solar grains)
- Stellar evolution (mass-loss in low-mass stars)
- baryon cycle in galaxies

Dust absorption and re-emission

Milky Way in the optical (credits: Axel Mellinger)

Milky Way in the infrared (credits: COBE satellite)

Attenuation of the light from stars in the UV/optical Re-emission in the Infrared

How do we see dust?

Spitzer Mid-IR 3.6-38 µm

Herschel Far-IR 55-672 μm

ALMA Sub-mm/mm 0.3-3.6 mm

NOEMA Sub-mm/mm 0.8-4.2 mm

Dust evolution in the interstellar medium (ISM) of galaxies

Complex interplay between:

• Stellar evolution;

- Evolution of dust grains: growth & destruction;
- Galactic inflows and outflows.

Dust around SN remnants (M>8 M_{\odot})

Dust evolution in the interstellar medium (ISM) of galaxies

Dust around SN remnants (M>8 M_{\odot})

- TP-AGB stars account for ~50-60% of dust in the Local Universe (Gehrz 89)
- May be important also at high redshifts (z>5) (e.g. Valiante+09)
- Most of the stars go through the TP-AGB phase

Where metals come from?

The Origin of the Solar System Elements

1 H		big	bang	fusion			cos	mic ray	/ fissio	n	-						2 He
3 Li	4 Be	merging neutron stars 🍿					exploding massive stars 🗾					5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	dying low mass stars				exploding white dwarfs 👩					13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Уb	71 Lu
			89 Ac	90 Th	91 Pa	92 U											
hic cre	ic created by Jennifer Johnson ESA/NASA/AASNova																

- Silicates (e.g. Mg₂SiO₄, MgSiO₃): the elements come from massive stars exploding in short time-scale
- **Carbon dust**: some carbon from massive stars, but most of them from low-mass stars (longer time-scale); Their evolution is likely to be link to the appearance of PAHs feature (Galliano+08).
- Iron: Type Ia supernovae (from white dwarfs in binary systems)
- Other heavy elements: low mass stars and neutron star mergers

TP-AGB stars

- H- and He-burning shells
- Several thermal pulses
- Third dredge-up for $M \ge 2 M_{\odot}$

C/O<1→ C/O>1

Dredge-up more efficient at lower metallicities

- High mass-loss rates (10⁻⁷-10⁻⁵ M_{\odot}/yr)
- Mass-loss of Sun ≈10⁻¹⁴ M_☉/yr
- Hot Bottom Burning (HBB): Hburning through CNO cycle (M ≥ 4 M_☉)
- Decreases C (CN cycle):
 - C/O>1→ C/O<1

7

Figure 1.1: Schematic sketch of the mixing episodes during thermal pulses.

Credits: Diego Vescovi (PhD thesis)

Circumstellar envelope

Dust-driven wind & mass-loss: momentum transferred to the dust grains (silicate/carbon dust for M/C stars, Eriksson+14; Bladh+15) Expansion velocity: measured, i.e. CO lines, OH maser emission (e.g. Marshall+04; Lagadec+10; Ramstedt & Olofsson 14; Goldman+17)

Stationary wind model

e.g. Ferrarotti & Gail 06; Ventura+12; Nanni+13,+14; Dell'Agli+15

Maercker PhD thesis (adapted from Habing & Olofsson 03)

Input stellar parameters

current stellar mass
effective temperature
stellar luminosity
mass-loss
elements abundances

Output

dust mass
dust composition
outflow velocity
spectra
Comparison with observation

Main results

dust yields (Nanni+13, +14)
dust growth/destruction (Nanni+13)
grain size and optical properties (Nanni+16, Nanni19)
dust production for resolved stars (Nanni+18,+19)

Dust spectral feature

O-rich stars:

- Silicates: olivine, pyroxene, quartz \rightarrow Feature at 10, 18 μ m (amorphous); 10, 18, 23, 28, 33, 40 and 60 μ m (crystalline, e.g. Jones+12)
- Aluminium oxide corundum $(Al_2O_3) \rightarrow$ Bump around 12 μ m
- Iron (?) \rightarrow Featureless (may condense at low Z, McDonald+11)
- Corundum and silicates features: depend on luminosity and mass-loss rate (e.g. Lebzelter+06).
- Dust α Z

M-stars expansion velocities

The predicted dust content and wind speed depends on the metallicity (as expected)

- OH/IR stars in the LMC and in the Galaxy, e.g. Goldman+17
- No OH maser emission detection in the SMC (Goldman+18)

What drives the wind in O-rich TP-AGB stars?

Stationary wind models couples with stellar tracks

Iron-rich: scattering+absorption

Dust spectral feature

C-rich stars:

- Amorphous carbon \rightarrow Featureless (its abundance does not depend on the initial Z)
- Silicon Carbide (SiC) \rightarrow Feature at 11.3 μ m
- Magnesium Sulfide (MgS) \rightarrow Bump around 30 μ m
- SiC and MgS features: dependent on metallicity and mass-loss rate (Sloan+06; Zijlstra+06; Lagadec+07; Leisenring+08; Sloan+15)

13

C-stars: wind speed

More complex situation for C-stars

Galactic extremes + Ramstedt&Olofsson
 14; Danilovich+15

- V_{exp} should depend carbon-excess rather than on the metallicity (e.g. Blah+19)
- C-stars in the LMC seem to have lower V_{exp} than C-stars in the Milky Way
- Observations in a larger range of stellar parameters are needed!

C-stars: wind speed

- Stationary wind models couples with stellar tracks (Cristallo+09)
- Observations are fairly well reproduced by our predictions

Pre-solar grains

Cristallo, Nanni+20

- The prescriptions for dust growth and wind dynamics have been coupled with FRUITY evolutionary tracks (Cristallo+09).
- By including the time-average effect of pulsation (and suitable seed particle abundance), the size distribution of SiC grains is fairly well reproduced by stars of M ~ 2 M_o and Z ~ Z_o(Cristallo+20).

Dust production from TP-AGB stars

Mass-loss & dust production rates

Mass-loss = DPR*Gas-to-dust

Which optical constants?

- Different optical data sets and grains sizes yield very different colours
- We constrained the optical constants in order to reproduce different observations in the infrared and Gaia DR2 bands (Nanni+16; Nanni 19)

Constraining dust properties: amorphous carbon around C-stars

Nanni+16

Small grains (< 0.04-0.1 µm) best reproduce different CCDs in the IR

Constraining dust properties: amorphous carbon around C-stars

- Only 2 combinations out of ~50 tested simultaneously reproduce both the infrared observations and the trends obtained by combining 2MASS and Gaia DR2 photometry from Lebzelter+18;
- Small grains (< 0.04-0.1 μm) + optical data sets from Hanner 88; Jaeger+98 (1000°C).

Spectra reprocessed by dust

Dust growth coupled with a stationary wind (Nanni+13; Nanni+14)

~3000 C-stars are fitted for the SMC and ~8000 in the LMC (Nanni+18, +19)

DPRs from C-stars in the Magellanic Clouds

SMC	DPR _c
Nanni+19	~25.2
Srinivasan+16	~ 8.0
Boyer+12	~ 7.5
Matsuura+13	~ 40
LMC	DPR _c
Nanni+19	~ 17.7
Srinivasan+16	~ 12.8
Dell'Agli+15	~ 40
Riebel+12	~ 17.0
Matsuura+09	~ 43-100

Variation of a factor ~5 and ~3 for the SMC and LMC respectively for different methods and assumptions

Dust production rates: low-Z galaxies

- No dependence of the DPR with the metallicity (most of the stars are Crich)
- Different from Galactic Globular Clusters low-Z AGB stars, M<~1 M _☉ (e.g. McDonald+11a,b)→ low dust enrichment

TP-AGB stars and dust evolution in galaxies

Dust yields and the chemical enrichment of galaxies

Dust ejecta as a function of mass and metallicity

Dust in the early Universe with JWST

NIRSpec spectroscopy in the PRISM configuration (0.6 - 5.3 μm, R ~ 100) Focus on JADES-GS+53.15138-27.81917 at z~6.71 Bump at 2175 Å

Witstok et al. 2023

Metal in the early Universe with JWST

H_α/H_β~ 3.7
Strong oxygen lines (1/5 solar; Witstok+23)

Results

- Attenuation well reproduced ($H_{\alpha}/H_{\beta} \sim 3.7$)
- Young burst needed to reproduce the UV slope (30% mass of stars produced)
- 2175 Å bump reproduced with a ~4% PAHs mass fraction

Conclusions

- It is possible to derive information about the dust composition around TP-AGB stars by studying their infrared spectra
- The wind speed of the outflow is connected the metallicity; few observations for C-stars at metallicity lower than solar are available
- The dust production rates of TP-AGB stars in different type of galaxies and clusters (characterized by diverse metallicity) are derived
- The estimate of the dust production and mass-loss rates is affected by the assumptions in radiative transfer calculations (e.g. dust optical constants)
- Optical properties of dust grains can be (somehow) constrained
- Theoretical dust ejecta depend considerably on the TP-AGB modelling. It is important to have robust constrain on the TP-AGB phase to model the metal and dust evolution in galaxies.