The specific angular momentum of ETGs

dit: ESO

Claudia Pulsoni, Ortwin Gerhard, Michael Fall, Magda Arnaboldi, A. Ennis, J. Hartke, L. Coccato, N. Napolitano

Early Type Galaxies (ETGs)

Galaxy angular momentum

$$\vec{J} = M \ \vec{r} \times \vec{v}$$

specific AM
$$j_{\star} = \frac{|\overrightarrow{J_{\star}}|}{M_{\star}} [\text{kpc km s}^{-1}]$$

= $\frac{\int \overrightarrow{r} \times \overrightarrow{v_{\star}}(x, y, z) \rho_{\star}(x, y, z) \, dx \, dy \, dz}{\int \rho_{\star}(x, y, z) \, dx \, dy \, dz}$

Effective radius, Re = encloses 1/2 of the total light

How do galaxies acquire AM?

Tidal torques induce dm halo angular momentum

Halo specific angular momentum

$$j_h \equiv \frac{J_h}{M_h} \propto \left(\frac{M_h}{M_\odot}\right)^{2/3} \text{ kpc km s}^{-1}$$

969

How do galaxies acquire AM?

Tidal torques induce dm halo angular momentum

Halo specific angular
momentum
$$\frac{j_*}{j_*} \quad j_h \equiv \frac{J_h}{M_h} \propto \left(\frac{M_h}{M_\odot} \frac{M_*}{M_*}\right)^{2/3} \text{ kpc km s}^{-1}$$

Peebles 1969

Galaxies "inherit" a fraction of the halo angular momentum

$$j_* \propto f_j f_*^{-2/3} \left(\frac{M_*}{M_\odot}\right)^{2/3} \text{ kpc km s}^{-1}$$

Romanowsky & Fall 2012 Posti et al. 2018

How do galaxies acquire AM?

Tidal torques induce dm halo angular momentum

Halo specific angular
momentum
$$\frac{j_*}{j_*} \quad j_h \equiv \frac{J_h}{M_h} \propto \left(\frac{M_h}{M_\odot} \frac{M_*}{M_*}\right)^{2/3} \text{ kpc km s}^{-1}$$

Galaxies "inherit" a fraction of the halo angular momentum

The Fall relation

VS morphology

- The scatter in the $j_* M_*$ plane is strongly correlated with morphology: an alternative to Hubble sequence! (Obreschkow and Glazebrook 2014, Cortese 2016, Fall & Romanowsky 2018)
- *j*_{*} measured "in detail" for only 8 ETGs (from major axis kinematics, assuming axisymmetry and cylindrical velocity fields;
 Romanowsky&Fall 2012) + 32 galaxies where *j*_{*} = *k_n V_{rot,2R_e} R_e* (calibrated on models and verified on the 8 galaxies above)

Why are ETGs problematic?

- Kinematics
- Stellar mass distribution
- Geometry

Why are ETGs problematic?

- Kinematics
- Stellar mass distribution
- Geometry

ETG kinematics

Emsellem et al. 2007, 2011 Cappellari et al. 2007, 2011 Naab et al. 2014; Penoyre et al. 2017

ETG kinematics FAST ROTATORS

SLOW ROTATORS

- <20% of the ETGs</p>
- irregular or no rotation
- triaxial
- massive

IFU surveys: ATLAS3D (Cappellari+2011) MANGA (Bundy+2015) CALIFA (Sanchez+2012) SAMI (Croom+2012 - Bryant+2015) MASSIVE (Ma+2014)

>80% of the ETGs

processes

regular, disk-like rotators

flattened, oblate, axisymmetric shapes

formation history dominated by gas-rich

Emsellem et al. 2007, 2011 Cappellari et al. 2007, 2011 Naab et al. 2014; Penoyre et al. 2017

Extending the kinematics to large radii

- 95% of the total mass
- dark matter dominates
- halo mostly accreted (ex-situ) star material
- long settling time scales (~1 Gyr): signatures of the formation processes preserved
- >50% of the stellar angular momentum

Extending the kinematics to large radii

• j_* measured "in detail" for only 8 bulge-dominated galaxies with strong assumptions on the geometry: 5FRs, 2 SRs and 1 Merger

 $\vec{J} = M \vec{r} \times \vec{v}$

- Need extremely extended kinematics out to $R > 10R_{\rho}$
- ➡Use alternative tracers of the stellar kinematics beyond $\sim 2R_{e}$

Planetary Nebulae as kinematic tracers * The ePN.S survey *

P.I. M. Arnaboldi

M. Capaccioli - A. Chies-Santos - L. Coccato - A. Cortesi - K. Freeman - O. Gerhard - J. Hartke - K. Kuijken - A. Longobardi - M. Merrifield - N. R. Napolitano - C. Pulsoni - A. Romanowsky - C. Tortora - E. Moylan - C. Narayan

- Bright [OIII] emitters: easily detectable
- PNe follow stars:
 - Number density \propto surface brightness
 - Kinematics agree in the overlap regions
- Good tracers of the stellar halo!

The Planetary Nebula Spectrograph W. Herschel Telescope, La Palma

Counter-dispersed imaging (Douglas+2002)

Planetary Nebulae as kinematic tracers * The ePN.S survey *

P.I. M. Arnaboldi

M. Capaccioli - A. Chies-Santos - L. Coccato - A. Cortesi - K. Freeman - O. Gerhard - J. Hartke - K. Kuijken - A. Longobardi - M. Merrifield - N. R. Napolitano - C. Pulsoni - A. Romanowsky - C. Tortora - E. Moylan - C. Narayan

Arnaboldi et al. 2017

An example: M49

* The ePN.S survey *

P.I. M. Arnaboldi

- **33 ETGs** with a wide range of parameters (luminosity, central velocity dispersion, ellipticity, boxy/diskyness)
- nearby, distance < 25 Mpc
- Magnitude limited sample, $10^{10.3} < M_{\ast}/M_{\odot} < 10^{11.7}$
- 24 fast and 9 slow rotators
- 2D Kinematics out to [3 13 Re], mean 6 Re IFS (Atlas3D, SLUGGS, MUSE) + PNe

Increase statistics of ETGs with AM measured by x4

Pulsoni+2018 Pulsoni+2023

Why are ETGs problematic?

- Kinematics
- Stellar mass distribution
- Geometry

Why are ETGs problematic?

- Kinematics
- Stellar mass distribution
- Geometry

ETGs are triaxial ellipsoids*

short - axis tube

outer long — axis tube Credits: Jo Bovy

Reconstructing j_t - use simulated galaxies from IllustrisTNG

Reconstructing j_t - use simulated galaxies from IllustrisTNG

The Fall relation for ETGs

The sAM retention factor

Tidal torque theory Peebles 1969

$$j_{h} \equiv \frac{J_{h}}{M_{h}} \propto \left(\frac{M_{h}}{M_{\odot}}\right)^{2/3} \text{ kpc km s}^{-1}$$

retained fraction of sAM
$$f_{j} \equiv \frac{j_{*}}{j_{h}} = \frac{j_{*}}{\text{const } M_{h}^{2/3}}$$

- At $10^{10} 10^{10.5} M_{\odot}$ S0s retain $\sim 30 \,\% \, j_h$, while Es only $\, \sim 10 \,\%$.
- At higher M_* , f_j strongly decreases with the star formation efficiency
- Difference with spirals from (dry) mergers, AGN feedback, and early SF quenching

(Genel et al. 2015; Zavala et al. 2016; Lagos+2017,2018; Rodriguez-Gomez et al. 2022)

Conclusions

- We measured j_* in a sample of 32 ETGs using 2D kinematic data out to a mean 6Re
- In the $j_* M_*$ plane, S0s and Es follow power-laws similar to spirals but much lower normalisation: Es have factor of 2-3 lower j_* than S0s and 10-15 times lower than the spirals
- At $10^{10} 10^{10.5} M_{\odot}$, the retention factor is of the order fj~30% for the S0s and fj<10% for the Es and strongly decreases with the star formation efficiency. Uncertainties due to the environment.
- Way forward: understand the evolution of j_{\star} in ETGs by targeting their likely progenitors at high z.

